Sinhgad Technical Education Society's

SINHGAD COLLEGE OF SCIENCE Department of Computer Science

(Affiliated to University of Pune, ID No. PU/PN/SC/162/2001, **NAAC Accredited**: 'B' + **Grade.**)

S.No. 9/1/5 & 9/2/4, off West Bypass Highway, Ambegaon (Bk), **PUNE**-411046.

(020) 24341730, 24100171/262, 24356798, E-mail: principal.scos@sinhgad.edu, Website: http://scos.sinhgad.edu

M. Sc. Microbiology (NEP-2023)

PROGRAMME OBJECTIVES (PO)

PO1: Academic competence:

- i. Describe microbial processes that can be used for the development of biochemical and immunological tools to improve the quality of human life.
- ii. Study the cytology, biochemistry, growth as well as application of environmentally and industrially important microbes with a specific emphasis on improving environmental sustainability and human health.
- iii. Describe and understand the concepts of role of microorganisms in geochemical processes like leaching of metals and bioremediation methods.

PO2: Personal and Professional competence:

- i. Apply tools of molecular taxonomy and bioinformatics to the study of diverse microbial groups.
- ii. Evaluate industrially important microbial products in terms of their purity, safety and ethically acceptable application for the benefit of mankind.
- iii. Combine public presentation skills of effective articulation and nonverbal communication with a sound understanding of microbial science to effectively communicate ideas.

PO3: Research Competence

- i. Validate scientific hypothesis and editorialize experimental scientific data by using statistical tools applicable to biological sciences.
- ii. Integrate principles of biology and physical sciences to standardize detection and quantification methods using sophisticated techniques.

PO4: Entrepreneurial and Social Competence:

- i. Employ skill sets related to Quality assurance and testing of pharmaceutically important products in accordance with internationally accepted standards.
- ii. Evaluate the importance of new groups of consumer goods such as prebiotics, probiotics and nutraceuticals.
- iii. Apply the concepts of microbial interactions in basic and advanced treatment of waste water treatment processes.

COURSE OUTCOME (CO)

CO1:

- i. Define species concept in prokaryotes and eukaryotes.
- ii. List measures and indices of diversity.
- iii. Define "unculturable" bacteria and list culture-independent molecular methods for identifying unculturable bacteria.
- iv. List different molecular methods used in microbial taxonomy.
- v. Know the differences between the six classes of fungi.

CO2:

- I. Explain the 5-Kingdom and 3-Domain classification systems and facets of microbial diversity.
- II. Understand molecular evolution.
- III. Explain socio-biology, Lamarckism, Darwinism, Neo-Darwinism, and understand Game Theory, as well as r and k selection.

CO3:

- i. Apply the use of molecular clocks in taxonomy.
- ii. Summarize various theories of evolution.

Course Outcomes for M. Sc. Microbiology First Part I

SEMESTER I

MB 511 MJ - Microbial Systematics

- CO1: Define species concepts in prokaryotes and eukaryotes.
- CO2: Explain the Five-Kingdom and Three-Domain classification systems.
- CO3: Differentiate between fungal classes and describe fungal systematics.
- CO4: Illustrate determinative and systematic bacteriology, including phenetic and phylogenetic approaches.
- CO5: Apply polyphasic approaches and molecular clocks in microbial taxonomy.
- CO6: Discuss facets of microbial diversity, including morphological, structural, metabolic, and ecological aspects.
- CO7: Measure species divergence and microbial diversity indices (alpha, beta, gamma).
- CO8: Explain the concept of unculturable bacterial diversity.
- CO9: Apply culture-independent molecular methods (PCR, RFLP, DGGE, etc.) for identifying unculturable bacteria.
- CO10: Extract total bacterial DNA and conduct metagenome analysis.
- CO11: Summarize the history and development of evolutionary theories (Lamarckism, Darwinism, Neo-Darwinism).

- CO12: Explain socio-biology, kin selection, and evolutionary stability.
- CO13: Discuss molecular evolution, including the origin of life and evolutionary trade-offs.

MB 512 MJ - Biochemistry, Cell and Developmental Biology

- CO1: Understand the structural features and classification of amino acids and proteins.
- CO2: Apply Henderson-Hasselbalch equations for buffer formulation.
- CO3: Analyse the conformational properties of polypeptides using Ramachandran plots.
- CO4: Describe nucleic acid structures, tautomeric forms of bases, and DNA forms.
- CO5: Differentiate between carbohydrates, including mono-, di-, and polysaccharides.
- CO6: Classify lipids based on their chemical structure and explain their functions.
- CO7: Explain concepts of commitment, determination, and differentiation in development.
- CO8: Understand morphogen gradients and their role in gastrulation and axis formation.
- CO9: Describe plant morphogenesis, including root and shoot development.
- CO10: Explore the ultrastructure and functions of cellular organelles.
- CO11: Describe protein trafficking and targeting to specific organelles.
- CO12: Analyse cell cycle regulation and apoptosis.

MB 513 MJ - Basic Quantitative Biology

- CO1: Explain basic statistical terms, variables, and measurement scales.
- CO2: Perform data collection, organization, and graphical representation.
- CO3: Apply measures of central tendency and dispersion to biological data.
- CO4: Understand concepts of probability distributions (binomial, normal, Poisson).
- CO5: Analyse biological data using parametric and non-parametric tests.
- CO6: Formulate and test hypotheses using t-tests and z-tests.

MB 514 MJP - Practicals Based on MB 511, MB 512 and MB 513

- CO1: Follow laboratory safety protocols and prepare biological buffers.
- CO2: Perform data visualization using software for statistical analysis.
- CO3: Apply microbiological techniques for isolation and identification of bacteria.
- CO4: Observe mitosis and polyploidy in onion root tips.
- CO5: Mount fruit fly embryos at various developmental stages.
- CO6: Extract microbial biomolecules like proteins and polysaccharides.

CO7: Perform spectrophotometric estimations of extracted biomolecules.

MB 510 RM - Research Methodology

- CO1: Understand types of research and problem formulation.
- CO2: Conduct literature reviews and define research objectives.
- CO3: Design research using various methods (qualitative, quantitative, mixed).
- CO4: Prepare scientific presentations and posters.
- CO5: Write research reports, abstracts, and project proposals.
- CO6: Address ethical issues in research, including plagiarism and copyrights.

MB 510 RMP - Research Methodology Practicals

- CO1: Use search engines and reference management tools for scientific research.
- CO2: Analyse statistical data using software.
- CO3: Prepare graphical abstracts and present scientific findings.

ELECTIVE THEORY AND PRACTICAL PAPERS

Group I - MB 515 MJ: Microbial Extremophiles

- CO1: Study the diversity, properties, and adaptation mechanisms of extremophiles.
- CO2: Understand applications of thermophiles, acidophiles, and other extremophiles.
- CO3: Isolate and identify extremophilic microbes from natural samples.
- CO4: Develop identification keys for extremophiles.

Group II - MB 516 MJ: Microbial Communication and Signal Transduction

- CO1: Explain quorum sensing in bacteria and biofilm dynamics.
- CO2: Explore signal transduction pathways and membrane transport mechanisms.
- CO3: Study quorum sensing signals and biofilm formation.
- CO4: Analyse chemotaxis and osmosis using artificial membranes.

Group III - MB 517 MJ: Advanced Quantitative Biology

- CO1: Analyse relationships between independent and dependent variables.
- CO2: Evaluate data using statistical techniques for categorical variables.
- CO3: Use statistical tools to interpret data from biological experiments.

SEMESTER II

MB 521 MJ - Molecular Biology I

- CO1: Describe the structure and functions of DNA.
- CO2: Explain DNA replication mechanisms and its regulation in prokaryotes and eukaryotes.
- CO3: Understand transcription processes in prokaryotes and eukaryotes.
- CO4: Differentiate between various RNA types and their processing.
- CO5: Explain the genetic code and protein synthesis mechanisms.
- CO6: Analyse the role of ribosomes, tRNAs, and associated factors in translation.
- CO7: Discuss operon models like *Lac, Trp* and *Ara* in prokaryotes.
- CO8: Analyse gene regulatory mechanisms in eukaryotes, including epigenetics.

MB 522 MJ - Enzymology, Bioenergetics and Metabolism

- CO1: Explain enzyme classification, structure, and catalysis.
- CO2: Analyse enzyme kinetics, including Michaelis-Menten and Lineweaver-Burk plots.
- CO3: Explore the principles of thermodynamics in biological systems.
- CO4: Understand ATP synthesis through substrate-level phosphorylation and oxidative phosphorylation.
- CO5: Describe glycolysis, TCA cycle, and electron transport chain.
- CO6: Analyse the energy yield and regulation of these pathways.
- CO7: Understand gluconeogenesis, lipid biosynthesis, and nitrogen assimilation.
- CO8: Explore integration and regulation of metabolic pathways.

MB 523 MJ - Laboratory Techniques and Instrumentation

- CO1: Understand the principles of UV-Vis, IR, and fluorescence spectroscopy.
- CO2: Apply chromatographic techniques like HPLC and GC for separation and purification.
- CO3: Conduct experiments using PAGE and agarose gel electrophoresis.
- CO4: Understand the principles and applications of ultracentrifugation.

MB 524 MJP - Practicals Based on MB 521, MB 522 and MB 523

- CO1: Isolate DNA and RNA from microbial cells.
- CO2: Perform PCR amplification and analyse results using gel electrophoresis.
- CO3: Conduct enzyme assays and study enzyme kinetics.

- CO4: Analyse metabolic intermediates using spectrophotometric methods.
- CO5: Perform separation of biomolecules using HPLC.
- CO6: Conduct experiments using spectroscopic and centrifugation techniques.

MB 520 OJT - Internship / On-Job Training

- CO1: Gain practical exposure to microbiological techniques in industrial or academic settings.
- CO2: Develop analytical and problem-solving skills through real-world applications.
- CO3: Apply theoretical knowledge to practical challenges.
- CO4: Develop teamwork, communication, and project management skills.

CHOICE-BASED OPTIONAL PAPERS

Group I - MB 525 MJ: Molecular Biology Tools and Applications

- CO1: Understand the principles of genetic engineering and cloning.
- CO2: Apply PCR-based techniques for diagnostics and research.
- CO3: Perform electrophoresis and DNA fingerprinting.
- CO4: Demonstrate plasmid isolation and restriction digestion.

Group II - MB 526 MJ: Nitrogen Metabolism, Respiration and Photosynthesis

- CO1: Understand biological nitrogen fixation and ammonium assimilation.
- CO2: Explain nitrate and nitrite reduction mechanisms.
- CO3: Differentiate between oxygenic and anoxygenic photosynthesis.
- CO4: Analyse the role of pigments in photosynthesis.
- CO5: Conduct experiments on nitrogen metabolism and photosynthesis.
- CO6: Analyse enzyme activities involved in nitrogen fixation.

Group III - MB 527 MJ: Molecular Biophysics

- CO1: Explore principles of NMR, X-ray crystallography, and spectroscopy.
- CO2: Study macromolecular interactions using biophysical methods.
- CO3: Analyse data from techniques like HPLC and UV spectroscopy.
- CO4: Conduct structural studies using protein modelling tools.

Group IV - MB 528 MJ: Bioinformatics

- CO1: Use computational tools for analysing biological data.
- CO2: Perform sequence alignment and phylogenetic analysis.
- CO3: Perform PCR amplification of 16S rRNA genes.
- CO4: Use bioinformatics software like BLAST and MEGA for phylogenetic studies.

M. SC. MICROBIOLOGY PART II

Semester III

MB 601 MJ - Immunology

- CO1: Define immune receptor-ligand interactions, tumour immunology, and lymphoid tumours.
- CO2: Explain signal transduction pathways, immune activation mechanisms, and tumour escape strategies.
- CO3: Apply biological response modifiers (BRMs) in cancer therapy.
- CO4: Compare complement system pathways and tumour antigens.
- CO5: Understand immunotherapy approaches to treat cancers and infections.
- CO6: Summarize network theory in immunology.

MB 602 MJ - Molecular Biology II

- CO1: Understand genomics, sequencing technologies, and epigenetics.
- CO2: Explore genomic variations, SNPs, and gene editing techniques.
- CO3: Apply gene therapy principles and GMO-related issues.
- CO4: Describe mobile genetic elements and their evolutionary roles.
- CO5: Understand proteomics and metabolomics in microbial studies.

MB 603 MJ - Clinical Microbiology

- CO1: Understand medical microbiology concepts, including bacterial pathogenicity.
- CO2: List and describe medically significant microorganisms.
- CO3: Study bacterial, viral, and fungal pathogens' epidemiology, diagnosis, and treatment.
- CO4: Understand chemotherapeutic agents and their modes of action.

MB 604 MJP - Practicals Based on MB 601, MB 602, MB 603

- CO1: Perform immunological techniques (e.g., immunodiffusion, immunoelectrophoresis).
- CO2: Visualize RNA using gel electrophoresis and perform plasmid transformations.
- CO3: Conduct primer design for genetic studies.
- CO4: Isolate and identify pathogenic microbes.
- CO5: Understand genomics and proteomics databases for microbial research.

Group I: MB 610 MJ - Cell Culture Techniques

- CO1: Gain awareness about cell culture technology.
- CO2: Learn cell culture media, types, and equipment.
- CO3: Understand lymphoid culture preparation techniques.

MB 610 MJP - Practicals Based on Cell Culture Techniques

- CO1: Perform primary and secondary cell cultures.
- CO2: Analyse cell cultures using software tools.

Group II: MB 611 MJ - Bioremediation and Biomass Utilization

- CO1: Differentiate bioremediation, biodegradation, and bioaugmentation.
- CO2: Understand microbial pathways for xenobiotic degradation.
- CO3: Apply biomass utilization for ecosystem and industrial purposes.

MB 611 MJP - Practicals Based on Bioremediation and Biomass Utilization

- CO1: Perform biodegradation experiments using microbial cultures.
- CO2: Analyse bioremediation effectiveness using case studies.

Semester IV

MB 651 MJ - Pharmaceutical Microbiology

- CO1: Understand drug discovery and pharmaceutical microbiology principles.
- CO2: Explore antimicrobial agents and their mechanisms.
- CO3: Learn about regulatory standards in pharmaceutical microbiology.

MB 652 MJ - Bioprocess Technology

CO1: Apply principles of fermentation technology.

CO2: Understand microbial bioconversion processes.

CO3: Learn scale-up, downstream processing, and industrial applications.

MB 653 MJP - Practicals Based on MB 651 and MB 652

CO1: Perform assays for drug evaluation and microbial quality control.

CO2: Conduct fermentation and downstream processing experiments.

Group I: MB 660 MJ - Quality Assurance and Validation in Pharmaceuticals

CO1. Understand pharmaceutical quality control and validation processes.

CO2. Explore the role of plant-derived anti-infectives.

MB 660 MJP - Practicals Based on Quality Assurance and Validation

CO1. Conduct validation experiments for pharmaceutical processes.

CO2. Analyse plant-derived compounds for antimicrobial activity.